Monday, June 27, 2022

[LeetCode] Combination Sum III

Problem: Find all valid combinations of k numbers that sum up to n such that the following conditions are true:

  • Only numbers 1 through 9 are used.
  • Each number is used at most once.

Return a list of all possible valid combinations. The list must not contain the same combination twice, and the combinations may be returned in any order.

Example:

Input: k = 3, n = 7
Output: [[1,2,4]]
Explanation:
1 + 2 + 4 = 7
There are no other valid combinations.
Input: k = 3, n = 9
Output: [[1,2,6],[1,3,5],[2,3,4]]
Explanation:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.
Input: k = 4, n = 1
Output: []
Explanation: There are no valid combinations.
Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.


Approach: We can use backtracking here. The recursive relation would be something like below:

f(k, n, i) = f(k - 1, n - i, i - j), where j is (i + 1)....9


Implementation in C#:

    public IList<IList<int>> CombinationSum3(int k, int n)
    {
        var currNums = new List<int>();
        var result = new List<IList<int>>();
        this.CombinationSum(k, n, currNums, 1, result);
        return result;
    }

    private void CombinationSum(int k,
                                int n,
                                List<int> currNums,
                                int currNum,
                                List<IList<int>> result)
    {
        if (currNums.Count == k)
        {
            if (n == 0)
            {
                Console.WriteLine($"Adding {string.Join(", ", currNums)}");
                result.Add(new List<int>(currNums));
            }
            return;
        }
        for (int i = currNum; i <= 9; ++i)
        {
            if (n - i >= 0)
            {
                currNums.Add(i);
                this.CombinationSum(k, n - i, currNums, i + 1, result);
                currNums.RemoveAt(currNums.Count - 1);
            }
            else
            {
                break;
            }
        }
    }


Complexity: O(2 ^ 9)

No comments:

Post a Comment