Problem: Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.
Notice that the solution set must not contain duplicate triplets.
Example:
Input: nums = [-1,0,1,2,-1,-4] Output: [[-1,-1,2],[-1,0,1]]
Input: nums = [] Output: []
Input: nums = [0] Output: []
Approach: We can use sorting here. Once we sort the array, We can use approach of two pointers low and high. For every nums[i], we check if there are two elements in nums[i + 1.... n] whose sum is -nums[i].
To avoid duplicate we can move i till nums[i] == nums[i + 1] and we can move high till nums[high] == nums[high - 1]. That's all!
Implementation in C#:
public IList<IList<int>> ThreeSum(int[] nums)
{
IList<IList<int>> result = new List<IList<int>>();
Array.Sort(nums);
for (int i = 0; i < nums.Length; ++i)
{
if ( i > 0 && nums[i] == nums[i - 1])
{
continue;
}
int low = i + 1, high = nums.Length - 1, sumToCheck = -nums[i];
while (low < high)
{
if (high < nums.Length - 1 && nums[high] == nums[high + 1])
{
--high;
continue;
}
if (nums[low] + nums[high] == sumToCheck)
{
result.Add(new List<int> { nums[i], nums[low], nums[high] });
++low;
--high;
}
else if (nums[low] + nums[high] < sumToCheck)
{
++low;
}
else
{
--high;
}
}
}
return result;
}
Complexity: O(n^2)
No comments:
Post a Comment