Problem: Implement a SnapshotArray that supports the following interface:
- SnapshotArray(int length) initializes an array-like data structure with the given length. Initially, each element equals 0.
- void set(index, val) sets the element at the given index to be equal to val.
- int snap() takes a snapshot of the array and returns the snap_id: the total number of times we called snap() minus 1.
- int get(index, snap_id) returns the value at the given index, at the time we took the snapshot with the given snap_id
Example:
Input: ["SnapshotArray","set","snap","set","get"] [[3],[0,5],[],[0,6],[0,0]] Output: [null,null,0,null,5] Explanation: SnapshotArray snapshotArr = new SnapshotArray(3); // set the length to be 3 snapshotArr.set(0,5); // Set array[0] = 5 snapshotArr.snap(); // Take a snapshot, return snap_id = 0 snapshotArr.set(0,6); snapshotArr.get(0,0); // Get the value of array[0] with snap_id = 0, return 5
Constraints:
- 1 <= length <= 5 * 10^4
- 0 <= index < length
- 0 <= val <= 10^9
- 0 <= snap_id < (the total number of times we call snap())
- At most 5 * 10^4 calls will be made to set, snap, and get.
Approach: First thing in the problem we can notice that we can't save full array, every time we take the snapshot as the length of the array could be 5 * 10 ^ 4 and snap can be called 5 * 10 ^ 4 times.
What we can do is we only store the updates which happened in the current snapshot. In this way for every index we will have a list of snapshot id and the value updates so now when we try to get the value given the snapshot we can do following:
- If no modification i.e. list of updates at the input index will be null or if no snapshot is taken i.e. current snapshot id is still 0 then we can simply return 0.
- Else we find the upper bound of snap_id using binary search and return the stored value.
That's all!
Implementation in C#:
public class SnapshotArray
{
public SnapshotArray(int length)
{
this.snapshots = new List<Tuple<int, int>>[length];
this.currSnapId = 0;
}
public void Set(int index, int val)
{
if (this.snapshots[index] == null)
{
this.snapshots[index] = new List<Tuple<int, int>>();
}
int length = this.snapshots[index].Count;
if (length > 0 &&
this.snapshots[index][length - 1].Item1 == this.currSnapId)
{
this.snapshots[index].RemoveAt(length - 1);
}
this.snapshots[index].Add(new Tuple<int, int>(this.currSnapId,
val));
}
public int Snap()
{
++this.currSnapId;
return this.currSnapId - 1;
}
public int Get(int index, int snap_id)
{
// No modification or no snapshot taken
if (this.snapshots[index] == null || this.currSnapId == 0)
{
return 0;
}
int snapIndex = this.FindSnapIndex(this.snapshots[index], snap_id);
return snapIndex == -1 ?
0 :
this.snapshots[index][snapIndex].Item2;
}
private int FindSnapIndex(List<Tuple<int, int>> snapIds, int snapId)
{
int start = 0, end = snapIds.Count - 1;
if (snapId >= snapIds[end].Item1)
{
return end;
}
while (start <= end)
{
int mid = start + (end - start) / 2;
int currSnap = snapIds[mid].Item1;
if (currSnap == snapId)
{
return mid;
}
else if (currSnap < snapId)
{
start = mid + 1;
}
else
{
end = mid - 1;
}
}
return end;
}
private List<Tuple<int, int>>[] snapshots;
private int currSnapId;
}
Complexity: SnapshotArray: O(1), Set: O(1), Snap: O(1), Get: O(logn)
No comments:
Post a Comment