Friday, October 4, 2024

[LeetCode] Snapshot Array

Problem: Implement a SnapshotArray that supports the following interface:

  • SnapshotArray(int length) initializes an array-like data structure with the given length. Initially, each element equals 0.
  • void set(index, val) sets the element at the given index to be equal to val.
  • int snap() takes a snapshot of the array and returns the snap_id: the total number of times we called snap() minus 1.
  • int get(index, snap_id) returns the value at the given index, at the time we took the snapshot with the given snap_id

Example:

Input: ["SnapshotArray","set","snap","set","get"]
[[3],[0,5],[],[0,6],[0,0]]
Output: [null,null,0,null,5]
Explanation: 
SnapshotArray snapshotArr = new SnapshotArray(3); // set the length to be 3
snapshotArr.set(0,5);  // Set array[0] = 5
snapshotArr.snap();  // Take a snapshot, return snap_id = 0
snapshotArr.set(0,6);
snapshotArr.get(0,0);  // Get the value of array[0] with snap_id = 0, return 5

Constraints:

  • 1 <= length <= 5 * 10^4
  • 0 <= index < length
  • 0 <= val <= 10^9
  • 0 <= snap_id < (the total number of times we call snap())
  • At most 5 * 10^4 calls will be made to set, snap, and get.


Approach: First thing in the problem we can notice that we can't save full array, every time we take the snapshot as the length of the array could be 5 * 10 ^ 4 and snap can be called 5 * 10 ^ 4 times.

What we can do is we only store the updates which happened in the current snapshot. In this way for every index we will have a list of snapshot id and the value updates so now when we try to get the value given the snapshot we can do following:

  • If no modification i.e. list of updates at the input index will be  null or if no snapshot is taken i.e. current snapshot id is still 0 then we can simply return 0.
  • Else we find the upper bound of snap_id using binary search and return the stored value.

That's all!


Implementation in C#:

public class SnapshotArray
{
    public SnapshotArray(int length)
    {
        this.snapshots = new List<Tuple<int, int>>[length];
        this.currSnapId = 0;
    }
   
    public void Set(int index, int val)
    {
        if (this.snapshots[index] == null)
        {
            this.snapshots[index] = new List<Tuple<int, int>>();
        }
        int length = this.snapshots[index].Count;
        if (length > 0 &&
            this.snapshots[index][length - 1].Item1 == this.currSnapId)
        {
            this.snapshots[index].RemoveAt(length - 1);
        }
        this.snapshots[index].Add(new Tuple<int, int>(this.currSnapId,
                                                      val));
    }
   
    public int Snap()
    {
        ++this.currSnapId;
        return this.currSnapId - 1;
    }
   
    public int Get(int index, int snap_id)
    {
        // No modification or no snapshot taken
        if (this.snapshots[index] == null || this.currSnapId == 0)
        {
            return 0;
        }
        int snapIndex = this.FindSnapIndex(this.snapshots[index], snap_id);
        return snapIndex == -1 ?
               0 :
               this.snapshots[index][snapIndex].Item2;
    }

    private int FindSnapIndex(List<Tuple<int, int>> snapIds, int snapId)
    {
        int start = 0, end = snapIds.Count - 1;
        if (snapId >= snapIds[end].Item1)
        {
            return end;
        }
        while (start <= end)
        {
            int mid = start + (end - start) / 2;
            int currSnap = snapIds[mid].Item1;
            if (currSnap == snapId)
            {
                return mid;
            }
            else if (currSnap < snapId)
            {
                start = mid + 1;
            }
            else
            {
                end = mid - 1;
            }
        }
        return end;
    }

    private List<Tuple<int, int>>[] snapshots;
    private int currSnapId;
}

Complexity: SnapshotArray: O(1), Set: O(1), Snap: O(1), Get: O(logn) 

No comments:

Post a Comment